Age-Dependent Evolution of the Yeast Protein Interaction Network Suggests a Limited Role of Gene Duplication and Divergence
نویسندگان
چکیده
Proteins interact in complex protein-protein interaction (PPI) networks whose topological properties-such as scale-free topology, hierarchical modularity, and dissortativity-have suggested models of network evolution. Currently preferred models invoke preferential attachment or gene duplication and divergence to produce networks whose topology matches that observed for real PPIs, thus supporting these as likely models for network evolution. Here, we show that the interaction density and homodimeric frequency are highly protein age-dependent in real PPI networks in a manner which does not agree with these canonical models. In light of these results, we propose an alternative stochastic model, which adds each protein sequentially to a growing network in a manner analogous to protein crystal growth (CG) in solution. The key ideas are (1) interaction probability increases with availability of unoccupied interaction surface, thus following an anti-preferential attachment rule, (2) as a network grows, highly connected sub-networks emerge into protein modules or complexes, and (3) once a new protein is committed to a module, further connections tend to be localized within that module. The CG model produces PPI networks consistent in both topology and age distributions with real PPI networks and is well supported by the spatial arrangement of protein complexes of known 3-D structure, suggesting a plausible physical mechanism for network evolution.
منابع مشابه
Using the Protein-protein Interaction Network to Identifying the Biomarkers in Evolution of the Oocyte
Background Oocyte maturity includes nuclear and cytoplasmic maturity, both of which are important for embryo fertilization. The development of oocyte is not limited to the period of follicular growth, and starts from the embryonic period and continues throughout life. In this study, for the purpose of evaluating the effect of the FSH hormone on the expression of genes, GEO access codes for this...
متن کاملEvolution of the Protein Interaction Network of Budding Yeast: Role of the Protein Family Compatibility Constraint
Understanding of how protein interaction networks (PIN) of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental basis. Here, we introduce a new in-silico evolution model of the PIN of budding yeast, Saccharomyces cerevisiae; the model is composed of the PIN and the protein family network. The basic ingredient of the model in...
متن کاملRapid evolution of expression and regulatory divergences after yeast gene duplication.
Although gene duplication is widely believed to be the major source of genetic novelty, how the expression or regulatory network of duplicate genes evolves remains poorly understood. In this article, we propose an additive expression distance between duplicate genes, so that the evolutionary rate of expression divergence after gene duplication can be estimated through phylogenomic analysis. We ...
متن کاملUsing Likelihood-Free Inference to Compare Evolutionary Dynamics of the Protein Networks of H. pylori and P. falciparum
Gene duplication with subsequent interaction divergence is one of the primary driving forces in the evolution of genetic systems. Yet little is known about the precise mechanisms and the role of duplication divergence in the evolution of protein networks from the prokaryote and eukaryote domains. We developed a novel, model-based approach for Bayesian inference on biological network data that c...
متن کاملModularity in the evolution of yeast protein interaction network
Protein interaction networks are known to exhibit remarkable structures: scale-free and small-world and modular structures. To explain the evolutionary processes of protein interaction networks possessing scale-free and small-world structures, preferential attachment and duplication-divergence models have been proposed as mathematical models. Protein interaction networks are also known to exhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Computational Biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2008